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Bird’s Nested Array Notation 
 

Handles recursive functions with limit ordinal ε0
 

 

 

Notes 

 

1. This is an extension of Bird’s Hyper-Dimensional Array Notation in that separator arrays 

(enclosed in square brackets) and dimension arrays (enclosed in angle brackets) can themselves 

be multidimensional or hyperdimensional arrays, or even beyond that in that the separator or 

dimension arrays within these are themselves multidimensional or hyperdimensional arrays, or 

beyond, and so on – hence these arrays are integrally embedded or ‘nested’ inside larger and 

larger versions of these arrays, and there can be any number of nested layers. 

2. A, B, A1, A2, ... , Ak are strings of characters within separators (denoted by square brackets). 

3. A1’, A2’, ... , Ak’ are strings of characters within angle brackets that are identical to the strings A1, 

A2, ... , Ak respectively except that the first entries of each have been reduced by 1, e.g. if Ai (for 

some 1 ≤ i ≤ k) begins with 5, Ai’ begins with 4; if Ai begins with 1, Ai’ begins with 0. 

4. a ‹A’› b means that the space corresponding to the separator [A] is filled up with b entries of ‘a’ in 

each 1-space, b 1-spaces in each 2-space, ... , b (b-1)-spaces in each b-space (also an ω-space), 

b ω-spaces in each (ω+1)-space, etc. These have their own Angle Bracket Rules (see page 2). 

5. # and #* are strings of characters representing the remainder of the array (if they exist). 

6. The comma (,) is used as shorthand for the [1] separator. 

 

 

The Nested Array Notation has 7 Main Rules and 7 Angle Bracket Rules 

 

Main Rules 

 

Rule M1 (only 1 or 2 entries, all in first 1-space): 

 {a} = a, 

 {a, b} = a^b. 

 

Rule M2 (last entry in any 1-space or higher dimensional space of main array is 1): 

 {# [A] 1} = {#}. 

When [A] < [B], 

 {# [A] 1 [B] #*} = {# [B] #*}. 

Remove trailing 1’s. See ‘Algorithm for ranking two separators [A] and [B]’ on pages 3-4. 

Note: This Rule also applies within separator arrays. 

 

Rule M3 (second entry is 1 or only 1 entry in first 1-space): 

 {a, 1 #} = a. 

When [A] ≥ [2] (i.e. [A] is not a comma), 

 {a [A] #} = a. 

 

Rule M4 (only 2 entries in first 1-space, next non-1 entry (n) not the first entry in its 1-space): 

 {a, b [A1] 1 [A2] ... 1 [Ak] 1, n #} = {a ‹A1’› b [A1] a ‹A2’› b [A2] ... a ‹Ak’› b [Ak] r, n-1 #}, 

where r = {a, b-1 [A1] 1 [A2] ... 1 [Ak] 1, n #}. 

[A1] ≥ [2] (i.e. non-comma). [A1] ≥ [A2] ≥ ... ≥ [Ak] (as a result of Rule M2). 
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Rule M5 (only 2 entries in first 1-space, next non-1 entry (n) is first entry in its 1-space): 

 {a, b [A1] 1 [A2] ... 1 [Ak] n #} = {a ‹A1’› b [A1] a ‹A2’› b [A2] ... a ‹Ak’› b [Ak] n-1 #}. 

[Ak] ≥ [2] (i.e. non-comma). [A1] ≥ [A2] ≥ ... ≥ [Ak] ≥ [2] (as a result of Rule M2). 

 

Rule M6 (Rules M1-5 do not apply, third entry is 1): 

 {a, b, 1, ... , 1, n #} = {a, a, a, ... , {a, b-1, 1, ... , 1, n #}, n-1 #}, 

where ‘1, ... , 1’ represents an unbroken string of k 1’s separated by commas (with k ≥ 1) and ‘a, ... ,’ 

represents an unbroken string of k-1 a’s separated by commas. 

 

Rule M7 (Rules M1-6 do not apply): 

 {a, b, c #} = {a, {a, b-1, c #}, c-1 #}. 

 

 

Angle Bracket Rules 

 

Rule A1 (only 1 entry of either 0 or 1): 

 ‘a ‹0› b’ = ‘a’, 

 ‘a ‹1› b’ = ‘a, a, ... , a’  (with b a’s). 

 

Rule A2 (last entry in any 1-space or higher dimensional space of array is 1): 

 ‘a ‹# [A] 1› b’ = ‘a ‹#› b’. 

When [A] < [B], 

 ‘a ‹# [A] 1 [B] #*› b’ = ‘a ‹# [B] #*› b’. 

Remove trailing 1’s. See ‘Algorithm for ranking two separators [A] and [B]’ on pages 3-4. 

 

Rule A3 (number to right of angle brackets is 1): 

 ‘a ‹A› 1’ = ‘a’. 

 

Rule A4 (Rules A1-3 do not apply, first entry is 0): 

 ‘a ‹0 [A1] 1 [A2] ... 1 [Ak] n #› b’ = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] n-1 # › b’, 

where n is next non-1 entry (after initial entry of 0). 

 

Rule A5 (Rules A1-4 do not apply): 

 ‘a ‹n #› b’ = ‘a ‹n-1 #› b [n #] a ‹n-1 #› b [n #] ... [n #] a ‹n-1 #› b’ 

   (with b ‘a ‹n-1 #› b’ strings). 

 

 

About the Nested Array Notation 

 

Angle Bracket Rules A2, A3 and A4 look fairly similar to Main Rules M2, M3 and M5 respectively for 

this notation. The main differences between Rule M5 and Rule A4 (apart from the different brackets) 

are that in the latter rule, the array begins with 0 (rather than ‘a, b’), and the initial entries and any 

unbroken string of 1’s immediately after them are all replaced by  ‘b ‹Ai’› b’  rather than  ‘a ‹Ai’› b’  

strings (that eventually become b’s rather than a’s). The first entry of an angle bracket array is the 

only entry that can take the value 0 – all other entries must be at least 1. The 0 is to avoid the 

unwieldy expressions generated when combining Rule A5 with Rule A4. 

 

As before, all angle brackets must be removed before any of the Main (M) Rules can be executed. 

Rule A4 involves the creation of further angle brackets nested within the existing pair of outer angle 
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brackets, which means that it is the newer, inner pairs of angle brackets that must be dealt with next 

(and each of them in turn). Only when all of these inner angle brackets are eliminated can another 

operation be made on the outer angle brackets. 

 

Single-entry separators are said to have no nested layers – these are level 0 nested separators (e.g. 

[5]). Separator arrays that themselves contain separators (of single entry of 1 or above – the 1 

indicating a comma) are level 1 nested separators (e.g. [4,4 [3] 6 [2] 3]), those that contain separator 

arrays that contain single-entry separators are level 2 nested separators (e.g. [3 [3 [3] 3] 3]), and so 

on. Angle bracket arrays similarly have nested levels, e.g. ‘5 ‹5 ‹5› 5› 5’ is a level 2 nested angle 

bracket array. A main array (within curly brackets) is a level n nested array if the highest nested level 

of the separators and angle bracket arrays contained within the main array has level n. 

 

 

Algorithm for ranking two separators [A] and [B] 

 

The ranking of [A] and [B] is determined by the highest ranking separator within their ‘base layers’, 

then the numbers of them when they are identical. When the numbers are equal, this is repeated for 

the subarrays of [A] and [B] to the right of the rightmost highest ranking separator. When the highest 

ranking separators and their numbers within the subarrays are identical, this is repeated again for the 

subarrays within the subarrays, until no more separators remain (i.e. we are left with single entries). If 

the final entries of [A] and [B] are the same, they are deleted along with the last separators of [A] and 

[B], and the entire process is repeated for the truncated [A] and [B], until each of these consists of a 

single entry – the original [A] would be completely identical to the original [B] (symbolised as [A] = [B]) 

when these single entries are the same. Otherwise, either [A] ranks lower than [B] ([A] < [B]), or vice 

versa ([A] > [B]) – if we obtain a lower level or number for [A] than for [B] on some measure at a 

particular point, then the original [A] ranks lower than the original [B] and the ‘[A] 1’ string is deleted 

when Rules M2 or A2 apply. (The ranking of separators within the ‘base layers’ of [A] and [B] are first 

determined by the highest ranking separator within their ‘base layers’ (in the second lowest layers of 

[A] and [B]), and so on.) 

 

Step 1: Copy the two strings A and B as A1 and B1 respectively and go to Step 2. 

 

Step 2: Copy the two strings A1 and B1 as A2 and B2 respectively and go to Step 3. 

 

Step 3: Lev(A2) and Lev(B2) each represent the number of nested levels of the strings A2 and B2 

respectively; a single-entry string has 0 nested levels, an ‘ordinary’ dimensional string (containing only 

single-entry separators) has 1 nested level, a string containing separators that are no higher than 

‘ordinary’ dimensional separator arrays has 2 nested levels, and so on. 

 If Lev(A2) > Lev(B2) then [A] > [B] and finish. 

 If Lev(A2) < Lev(B2) then [A] < [B] and finish. 

 If Lev(A2) = Lev(B2) > 0 then go to Step 4. 

 If Lev(A2) = Lev(B2) = 0 then go to Step 7. 

 

Step 4: Find the highest ranking separators [A*] and [B*] within the strings A2 and B2 respectively. 

 If [A*] > [B*] then [A] > [B] and finish. 

 If [A*] < [B*] then [A] < [B] and finish. 

 If [A*] = [B*] then take [H] = [A*] = [B*] and go to Step 5. 
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Step 5: Num(H, A2) and Num(H, B2) each represent the number of [H] separators in strings A2 and B2 

respectively. 

 If Num(H, A2) > Num(H, B2) then [A] > [B] and finish. 

 If Num(H, A2) < Num(H, B2) then [A] < [B] and finish. 

 If Num(H, A2) = Num(H, B2) then go to Step 6. 

 

Step 6: Remove all entries up to and including the last [H] separator of each of the strings A2 and B2 

and go back to Step 3. 

 

Step 7: A2 and B2 each contain a single entry of a and b respectively. 

 If a > b then [A] > [B] and finish. 

 If a < b then [A] < [B] and finish. 

 If a = b then go to Step 8. 

 

Step 8: Remove very last entry and separator of both A1 and B1. 

 If no entries of A1 and B1 remain then [A] = [B] and finish. 

 If any entries of A1 and B1 remain then go back to Step 2. 

 

Note: It is best if we start with the top layers first (which contain the simplest separator arrays of only 

one entry), then work our way down, layer by layer, until we reach the bottom or base layer. (This 

method would help with the difficulties of ranking complex separator arrays in the lower layers.) 

 

 

Hierarchy of separators 

 

Each separator can be represented by an ordinal which denotes its level. 

 

In Bird’s Hyper-Dimensional Array Notation, 

 [n+1] separates n-spaces and has level n, 

 [1, 2] separates ω-spaces (as there is no limit on the number of dimensions) and has level ω, 

and, in general, 

 [n1+1, n2+1, n3+1, ... , nk+1]  has level  (ω^(k-1))nk + ... + (ω^2)n3 + ωn2 + n1. 

 

In Bird’s Nested Array Notation, 

 [1 [2] 2]  has level  ω^ω, 

 [1 [3] 2]  has level  ω^ω^2, 

 [1 [4] 2]  has level  ω^ω^3, 

 [1 [n+1] 2]  has level  ω^ω^n, 

 [a+1, b+1 [n+1] c+1, d+1]  (n ≥ 2)  has level  (ω^ω^n)(ωd+c) + ωb + a 

                                                                     = (ω^(ω^n+1))d + (ω^ω^n)c + ωb + a, 

 [a+1, b+1 [n+1] c+1 [n+1] d+1]  (n ≥ 2)  has level  (ω^((ω^n)2))d + (ω^ω^n)c + ωb + a, 

 [a+1, b+1 [m+1] c+1 [n+1] d+1]  (m, n ≥ 2; m < n)  has level  (ω^ω^n)d + (ω^ω^m)c + ωb + a, 

 [a+1, b+1 [m+1] c+1 [n+1] d+1]  (m, n ≥ 2; m > n)  has level  (ω^ω^m)((ω^ω^n)d+c) + ωb + a 

                                                                                   = (ω^(ω^m+ω^n))d + (ω^ω^m)c + ωb + a, 

 [1 [1, 2] 2]  has level  ω^ω^ω, 

 [a+1, b+1 [m+1, n+1] c+1, d+1]  has level  (ω^ω^(ωn+m))(ωd+c) + ωb + a, 

 [1 [1, 1, 2] 2]  has level  ω^ω^ω^2, 

 [1 [1, 1, 1, 2] 2]  has level  ω^ω^ω^3, 

 [1 [1 [2] 2] 2]  has level  ω^ω^ω^ω, 
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 [1 [1 [3] 2] 2]  has level  ω^ω^ω^ω^2, 

 [1 [1 [4] 2] 2]  has level  ω^ω^ω^ω^3, 

 [1 [1 [1, 2] 2] 2]  has level  ω^ω^ω^ω^ω, 

 [1 [1 [1 [2] 2] 2] 2]  has level  ω^ω^ω^ω^ω^ω, 

 [1 [1 [1 [1, 2] 2] 2] 2]  has level  ω^ω^ω^ω^ω^ω^ω. 

 

Each additional nested layer of the separator increases the height of the omega power tower level by 

two. [2] is a halfway house (in hyperlog to base ω terms) between a comma ([1]) and [1, 2]; this is 

analogous to 2 sitting halfway between 1 and ω (= 1/0) on the reciprocal scale. 

 

Level 1 nested separators (with levels between ω and ω^ω^ω) rank higher than any single-entry 

(level 0 nested) separator (with level below ω), level 2 nested separators (levels between ω^^3 and 

ω^^5) rank higher than any level 1 nested separator, level 3 nested separators (levels between ω^^5 

and ω^^7) rank higher than any level 2 nested separator. In general, level n nested separators rank 

higher than any level n-1 (or lower) nested separator. When the number of nested levels is the same, 

it is the numbers in the single-entry separators in the highest layers that determines the rank (the 

dimension of the level). 

 

Since a separator can have up to ω nested levels, the limit ordinal of a separator’s level in Bird’s 

Nested Array Notation would be ω^^(2ω) = ω^^ω = ε0, and the notation can handle recursive 

functions with limit ordinal ε0. This is because ω^ε0 = ε0 is the limit ordinal of the number of arguments 

(or entries) in the array, for, in general, a separator marking an α-space can have up to ω^α 

arguments. 

 

 

Examples 

 

One dimensional level 1 nested arrays are the hyper-dimensional arrays (see Bird’s 

Hyper-Dimensional Array Notation). 

 

In the second dimension of level 1 nested arrays, 

 {a, b [1 [2] 2] 2} = {a ‹0 [2] 2› b} 

                          = {a ‹b ‹1› b› b} 

                          = {a ‹b, b, b, ... , b› b} (with b b’s inside angle brackets). 

 

The number 

 {3, 2 [1 [2] 2] 2} = {3 ‹0 [2] 2› 2} 

                          = {3 ‹2 ‹1› 2› 2} 

                          = {3 ‹2, 2› 2} 

                          = {3 ‹0,2› 2 [1,2] 3 ‹0,2› 2 [2,2] 3 ‹0,2› 2 [1,2] 3 ‹0,2› 2} 

                          = {3 ‹2› 2 [1,2] 3 ‹2› 2 [2,2] 3 ‹2› 2 [1,2] 3 ‹2› 2} 

                          = {3,3 [2] 3,3 [1,2] 3,3 [2] 3,3 [2,2] 3,3 [2] 3,3 [1,2] 3,3 [2] 3,3}. 

 

 {4, 3 [1 [2] 2] 2} = {4 ‹0 [2] 2› 3} 

                          = {4 ‹3 ‹1› 3› 3} 

                          = {4 ‹3, 3, 3› 3} 

                          = {4 ‹2,3,3› 3 [3,3,3] 4 ‹2,3,3› 3 [3,3,3] 4 ‹2,3,3› 3} 

                          = {A [2,3,3] A [2,3,3] A [3,3,3] A [2,3,3] A [2,3,3] A [3,3,3] A [2,3,3] A [2,3,3] A}, 

where the string of characters 
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 A = ‘4 ‹1,3,3› 3’. 

The separators used in descending order of level are [3,3,3], [2,3,3], [1,3,3], [3,2,3], [2,2,3], [1,2,3], 

[3,1,3], [2,1,3], [1,1,3], [3,3,2], [2,3,2], [1,3,2], [3,2,2], [2,2,2], [1,2,2], [3,1,2], [2,1,2], [1,1,2], [3,3], [2,3], 

[1,3], [3,2], [2,2], [1,2], [3], [2] and comma. Writing it out in full would require 3^27 = 

7,625,597,484,987 4’s. 

 

 {3, 2 [2 [2] 2] 2} = {3 ‹1 [2] 2› 2} 

                          = {3 ‹0 [2] 2› 2  [1 [2] 2]  3 ‹0 [2] 2› 2} 

                          = {3,3 [2] 3,3 [1,2] 3,3 [2] 3,3 [2,2] 3,3 [2] 3,3 [1,2] 3,3 [2] 3,3  [1 [2] 2] 

                              3,3 [2] 3,3 [1,2] 3,3 [2] 3,3 [2,2] 3,3 [2] 3,3 [1,2] 3,3 [2] 3,3}. 

 

In the third dimension of level 1 nested arrays, 

 {a, b [1 [3] 2] 2} = {a ‹0 [3] 2› b} 

                          = {a ‹b ‹2› b› b} 

                          = {a ‹ b,b,...,b [2] b,b,...,b [2] ...... [2] b,b,...,b › b} 

    (with b ‘rows’ of b entries = b^2 entries of b inside angle brackets). 

 

The number 

 {3, 2 [1 [3] 2] 2} = {3 ‹0 [3] 2› 2} 

                          = {3 ‹2 ‹2› 2› 2} 

                          = {3 ‹2,2 [2] 2,2› 2} 

                          = {A [1,2 [2] 2,2] A [2,2 [2] 2,2] A [1,2 [2] 2,2] A}, 

where A = ‘3 ‹0,2 [2] 2,2› 2’ 

    = ‘3 ‹2 [2] 2,2› 2’ 

    = ‘B [1 [2] 2,2] B [2 [2] 2,2] B [1 [2] 2,2] B’, 

where B = ‘3 ‹0 [2] 2,2› 2’ 

    = ‘3 ‹2 ‹1› 2 [2] 1,2› 2’ 

    = ‘3 ‹2,2 [2] 1,2› 2’ 

    = ‘C [1,2 [2] 1,2] C [2,2 [2] 1,2] C [1,2 [2] 1,2] C’, 

where C = ‘3 ‹0,2 [2] 1,2› 2’ 

    = ‘3 ‹2 [2] 1,2› 2’ 

    = ‘D [1 [2] 1,2] D [2 [2] 1,2] D [1 [2] 1,2] D’, 

where D = ‘3 ‹0 [2] 1,2› 2’ 

    = ‘3 ‹2 ‹1› 2 [2] 2 ‹0› 2› 2’ 

    = ‘3 ‹2,2 [2] 2› 2’ 

    = ‘E [1,2 [2] 2] E [2,2 [2] 2] E [1,2 [2] 2] E’, 

where E = ‘3 ‹0,2 [2] 2› 2’ 

    = ‘3 ‹2 [2] 2› 2’ 

    = ‘F [1 [2] 2] F [2 [2] 2] F [1 [2] 2] F’, 

where F = ‘3 ‹0 [2] 2› 2’ 

    = ‘3 ‹2 ‹1› 2› 2’ 

    = ‘3 ‹2, 2› 2’ 

    = ‘3,3 [2] 3,3 [1,2] 3,3 [2] 3,3 [2,2] 3,3 [2] 3,3 [1,2] 3,3 [2] 3,3’. 

 

The number 

 {4, 3 [1 [3] 2] 2} = {4 ‹0 [3] 2› 3} 

                          = {4 ‹3 ‹2› 3› 3} 

                          = {4 ‹ 3 ‹1› 3 [2] 3 ‹1› 3 [2] 3 ‹1› 3 › 3} 

                          = {4 ‹ 3,3,3 [2] 3,3,3 [2] 3,3,3 › 3} 



7 
 

                          = {A [3,3,3 [2] 3,3,3 [2] 3,3,3] A [3,3,3 [2] 3,3,3 [2] 3,3,3] A}, 

where A = ‘4 ‹ 2,3,3 [2] 3,3,3 [2] 3,3,3 › 3’. 

 

Examples of level 1 nested arrays are: 

 {3, 3 [1,2] 3}, 

 {5, 5, 5 [2,3,4] 3 [2] 2}, 

 {4, 4, 4, 4 [4,4] 3, 3  [3,3 [6] 3,3 [9] 3,3]  2}, 

 {3, 3, 3  [10 [100] 10]  3, 3, 3  [10 [{3,3 [3] 3,3}] 10]  3, 3, 3}. 

 

Level 1 nested separators include 

 [1,2],  [3,3 [6] 3,3 [9] 3,3]  and  [10 [{3,3 [3] 3,3}] 10]. 

 

Level 1 nested angle bracket arrays include 

 ‘3 ‹3, 3› 3’  and  ‘3 ‹3 ‹3› 3› 3’. 

 

Level 2 nested arrays start with 

 {a, b [1 [1, 2] 2] 2} = {a ‹0 [1, 2] 2› b} 

                              = {a ‹b ‹0, 2› b› b} 

                              = {a ‹b ‹b ‹0› b› b› b} 

                              = {a ‹b ‹b› b› b}. 

 

The number 

 {4, 3 [1 [1, 2] 2] 2} = {4 ‹0 [1, 2] 2› 3} 

                              = {4 ‹3 ‹0, 2› 3› 3} 

                              = {4 ‹3 ‹3› 3› 3} 

                              = {4 ‹ 3 ‹2› 3 [3] 3 ‹2› 3 [3] 3 ‹2› 3 › 3} 

                              = {4 ‹A› 3} 

has highest separator [A] or 

 [3,3,3 [2] 3,3,3 [2] 3,3,3 [3] 3,3,3 [2] 3,3,3 [2] 3,3,3 [3] 3,3,3 [2] 3,3,3 [2] 3,3,3]. 

 

In the second dimension of level 2 nested arrays, 

 {a, b [1 [1 [2] 2] 2] 2} = {a ‹0 [1 [2] 2] 2› b} 

                                  = {a ‹b ‹0 [2] 2› b› b} 

                                  = {a ‹b ‹b ‹1› b› b› b} 

                                  = {a ‹b ‹b, b, b, ... , b› b› b} 

     (with b b’s inside inner angle brackets). 

 

In the third dimension of level 2 nested arrays, 

 {a, b [1 [1 [3] 2] 2] 2} = {a ‹0 [1 [3] 2] 2› b} 

                                  = {a ‹b ‹0 [3] 2› b› b} 

                                  = {a ‹b ‹b ‹2› b› b› b} 

                                  = {a ‹b ‹ b,b,...,b [2] b,b,...,b [2] ...... [2] b,b,...,b › b› b} 

   (with b ‘rows’ of b entries = b^2 entries of b inside inner angle brackets). 

 

The number 

 {4, 3 [1 [1 [3] 2] 2] 2} = {4 ‹0 [1 [3] 2] 2› 3} 

                                  = {4 ‹3 ‹0 [3] 2› 3› 3} 

                                  = {4 ‹3 ‹3 ‹2› 3› 3› 3} 

                                  = {4 ‹3 ‹ 3,3,3 [2] 3,3,3 [2] 3,3,3 › 3› 3}. 
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Examples of level 2 nested arrays are: 

 {3, 3 [3 [1,2] 3] 3}, 

 {5, 5, 5  [4,4 [2,3,4] 3,3 [6] 2,2]  3 [2,2] 2 [9] 2}, 

 {10, 10  [10 [10 [100] 10] 10]  10}. 

In the above arrays, the level 2 nested separators are 

 [3 [1,2] 3],  [4,4 [2,3,4] 3,3 [6] 2,2]  and  [10 [10 [100] 10] 10]. 

 

Level 2 nested dimension arrays include 

 ‘3 ‹3 ‹3,3› 3› 3’  and  ‘3 ‹3 ‹3 ‹3› 3› 3› 3’. 

 

The following array 

 {3, 2  [5 [4 [3 [2] 3] 4] 5]  2} 

is a level 3 nested array, and 

 [5 [4 [3 [2] 3] 4] 5] 

is a level 3 nested separator. The two 5’s are said to be in the first layer of the separator, the two 4’s 

are said to be in the second layer, the two 3’s are said to be in the third layer and the 2 is said to be in 

the fourth layer (or top layer) of the separator. 

 

When all of the numbers on the left hand side of the nested separators in the above array are 1’s and 

all of the numbers on the right hand side of the nested separators are 2’s, we get 

 {3, 2  [1 [1 [1 [2] 2] 2] 2]  2} 

  = {3 ‹0 [1 [1 [2] 2] 2] 2› 2} 

  = {3 ‹2 ‹0 [1 [2] 2] 2› 2› 2} 

  = {3 ‹2 ‹2 ‹0 [2] 2› 2› 2› 2} 

  = {3 ‹2 ‹2 ‹2 ‹1› 2› 2› 2› 2} 

  = {3 ‹2 ‹2 ‹2,2› 2› 2› 2} 

  = {3 ‹2 ‹ 2,2 [2] 2,2 [1,2] 2,2 [2] 2,2 [2,2] 2,2 [2] 2,2 [1,2] 2,2 [2] 2,2 › 2› 2}. 

 

The dimension array within the curly brackets in the above example 

 ‘3 ‹2 ‹2 ‹2,2› 2› 2› 2’ 

is a level 3 nested dimension array. 

 

The number 

 {4, 3 [1 [1 [1 [3] 2] 2] 2] 2} = {4 ‹0 [1 [1 [3] 2] 2] 2› 3} 

                                          = {4 ‹3 ‹0 [1 [3] 2] 2› 3› 3} 

                                          = {4 ‹3 ‹3 ‹0 [3] 2› 3› 3› 3} 

                                          = {4 ‹3 ‹3 ‹3 ‹2› 3› 3› 3› 3} 

                                          = {4 ‹3 ‹3 ‹ 3,3,3 [2] 3,3,3 [2] 3,3,3 › 3› 3› 3}. 

 

As the level of nested arrays get higher and higher, some of the separator arrays become ‘trees’ of 

arrays, which branch off into further separator arrays, which, in turn, have smaller branches of more 

separator arrays, until we get ‘leaves’ (separators with single entries). This is an incredibly powerful 

notation that enables us to generate ever huger and huger numbers – something that is unlikely to be 

surpassed by any other notation. 

 

The Nested Array Notation notation allows us to create numbers as huge as: 

 {3, 3 [3, 3 [3, 3 [3, 3 [3, 3 [3, 3 [3, 3 [3, 3 [3,3 [3] 2] 2] 2] 2] 2] 2] 2] 2] 2} 

  (a level 8 nested array) 

and 



9 
 

 {3 ‹3 ‹3 ‹3 ‹3 ‹3 ‹3 ‹3 ‹3 ‹3› 3› 3› 3› 3› 3› 3› 3› 3› 3} 

  (a level 8 nested dimension array – 10 3’s from centre out), 

and much, much larger, of course – as the separators can grow into ‘trees’, quite literally! And what is 

more, is that evaluating those ‘tree’ arrays brings an almost infinite ‘forest’ of them before you know it! 

Perhaps, these arrays ought be termed ‘forest’ arrays! 

 

The function, 

 f(n) = {n, n [1 [1 [ ... [1 [2] 2] ... ] 2] 2] 2}  (with (n+1)/2 square brackets, n odd) 

       = {n, n [1 [1 [ ... [1 [1, 2] 2] ... ] 2] 2] 2} (with n/2 square brackets, n even) 

is ε0-recursive, as ε0 = ω^^ω. 

 

The Fusible Numbers (http://www.mathpuzzle.com/fusible.pdf) are ε0-recursive as they grow as 

rapidly as f(n) in the paragraph above. In that paper, m(x) is the difference between x and smallest 

fusible number > x. 

 If x < 0, then m(x) = -x, otherwise, m(x) = m(x - m(x-1))/2. 

The sequence of numbers f(x) = -log2 m(x) grows as follows: 

 f(0) = 1, 

 f(1) = 3, 

 f(2) = 10, 

 f(3) = 1,541,023,937, 

 f(4) is probably between Skewes’ Number and Graham’s Number. 

 

The Kirby-Paris hydra game (http://googology.wikia.com/wiki/Kirby-Paris_hydra) is a one-player game 

played on a tree. The game is played as follows: 

1. We start with a rooted tree T. Call its root r. 

2. At step n (starting with 1), Hercules picks a leaf vertex of the tree. Call the leaf a and its parent b: 

A. a is deleted from T. 

B. If b = r, nothing happens. Otherwise, let c be the parent of b. Consider the subtree consisting 

of b and all its children; copy this subtree n times. Attach all these copies to c. 

 

The hydra grows very rapidly at first, but regardless of what strategy Hercules uses, the hydra will 

eventually reduce to just a single node. Define Hydra(n) as the number of turns it takes Hercules to 

defeat a hydra consisting of a path of length n, assuming he always cuts the rightmost edge each 

step. Then 

 Hydra(0) = 0, 

 Hydra(1) = 1, 

 Hydra(2) = 3, 

 Hydra(3) = 37, 

 Hydra(4) > {5, 5, 4, 3}, 

 Hydra(5) > {5, 5, 5, 5, 5 [2] 5, 5, 5, 5, 5 [2] 5, 5, 5, 5}, 

 Hydra(6) > {5, 5 [5, 3] 2}, 

 Hydra(7) > {5, 5 [1 [2] 1 [2] 1,1,1,1,2] 2}, 

 Hydra(8) > {5, 5 [1 [5, 3] 2] 2}, 

 Hydra(9) > {5, 5 [1 [1 [2] 1 [2] 1,1,1,1,2] 2] 2}. 

In general, for n ≥ 6, 

 Hydra(n) > {5, 5 [1 [1 [ ... [1 [2] 1 [2] 1,1,1,1,2] ... ] 2] 2] 2} 

    (with (n-3)/2 layers of square brackets, n odd) 

                > {5, 5 [1 [1 [ ... [1 [5, 3] 2] ... ] 2] 2] 2} 

    (with (n-4)/2 layers of square brackets, n even), 

http://www.mathpuzzle.com/fusible.pdf
http://googology.wikia.com/wiki/Kirby-Paris_hydra
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so, the growth rate of Hydra(n) is also at the ε0 level of recursion. 

 

Another example of an ε0-recursive function is the Goodstein sequence (G(n)). Some values are 

shown below: 

 G(0) = 1, 

 G(1) = 2, 

 G(2) = 4, 

 G(3) = 6, 

 G(4) = 3×2
402,653,211

 - 2, 

 10^^10^^10^^(10^10^10^20) < G(5) < 4^^^8 = {4, 8, 3}, 

 {2, 3, {2, 3, 3×2
402,653,211

}} < G(8) < {3, 4, 1, 2}, 

 {3, 4, 3, 3, 3} < G(16) < {3, 5, 3, 3, 3}, 

 {3, 4, 2 [2] 2} < G(32) < {3, 5, 2 [2] 2}, 

 {3, 4, 4 [2] 2} < G(64) < {3, 5, 4 [2] 2}, 

 {3, 4, 1, 2 [2] 2} < G(128) < {3, 5, 1, 2 [2] 2}, 

 {3, 5 [2] 3} < G(256) < {3, 6 [2] 3}, 

 {3, 3 [4] 2} < G(65,536) < {3, 4 [4] 2}, 

 {3, 3 [4, 4, 4, 3] 3} < G(2^65,536) < {3, 4 [1 [2] 2] 2}, 

 {3, 3 [1 [1, 2] 2] 2} < G(2^2^65,536) < {3, 3 [1 [1 [2] 2] 2] 2}, 

 {3, 3 [1 [1 [2] 2] 2] 2} < G(2^2^2^65,536) < {3, 3 [1 [1 [1, 2] 2] 2] 2}. 

Further examples can be seen at http://googology.wikia.com/wiki/Goodstein_sequences. 
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