Proof that Bird's Linear Array Notation with 5 or more entries goes beyond Conway's Chained Arrow Notation

Conway's Chained Arrow Notation (invented by John Conway) operates according to the following rules:

When the chain consists of 3 entries, then

$$
\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c}=\mathrm{a}^{\wedge \wedge \wedge \cdots \wedge} \mathrm{b} \quad \text { (with } \mathrm{c} \text { Knuth's up-arrows). }
$$

If the last entry in the chain is a 1 , it can be removed:

$$
\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 1=\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x}
$$

If the penultimate entry in the chain is a 1 , the last 2 entries can be removed:

$$
a \rightarrow b \rightarrow \ldots \rightarrow x \rightarrow 1 \rightarrow z=a \rightarrow b \rightarrow \ldots \rightarrow x
$$

If there are just 2 entries in the chain, the remaining arrow becomes an exponent:

$$
a \rightarrow b=a^{\wedge} b \quad\left(\text { since } a \rightarrow b \rightarrow 1=a^{\wedge} b\right)
$$

The last entry in the chain can be reduced by 1 by taking the penultimate entry and replacing it with a copy of the entire chain with its penultimate entry reduced by 1 :

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{~b} & \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{y}+1) \rightarrow(\mathrm{z}+1) \\
& =\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow \mathrm{y} \rightarrow(\mathrm{z}+1)) \rightarrow \mathrm{z} .
\end{aligned}
$$

For example,

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{~b} & \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 2 \rightarrow(\mathrm{z}+1) \\
& =\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 1 \rightarrow(\mathrm{z}+1)) \rightarrow \mathrm{z} \\
& =\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x}) \rightarrow \mathrm{z}
\end{aligned}
$$

(1 nested bracket),

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{~b} & \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 3 \rightarrow(\mathrm{z}+1) \\
& =\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 2 \rightarrow(\mathrm{z}+1)) \rightarrow \mathrm{z} \\
& =\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow 1 \rightarrow(\mathrm{z}+1)) \rightarrow \mathrm{z}) \rightarrow \mathrm{z} \\
& =\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x}) \rightarrow \mathrm{z}) \rightarrow \mathrm{z}
\end{aligned}
$$

(2 nested brackets).
In general,

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{~b} & \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{y}+1) \rightarrow(\mathrm{z}+1) \\
& =\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow(\ldots \ldots(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{x}) \rightarrow \mathrm{z}) \ldots \ldots) \rightarrow \mathrm{z}
\end{aligned}
$$

(with y nested brackets).

The brackets can only be removed after the chain inside the brackets has been evaluated into a single number.

Almost the first thing that I did when learning of this new notation was that I conjectured the following results:

$$
\begin{array}{ll}
\{a, b, 1,2\}>a \rightarrow a \rightarrow(b-1) \rightarrow 2 & \text { (for } a \geq 3, b \geq 2), \\
\{a, b, c, 2\}>a \rightarrow a \rightarrow(b-1) \rightarrow(c+1) & \text { (for } a \geq 3, b \geq 2, c \geq 1), \\
\{a, b, c, 3\}>a \rightarrow a \rightarrow a \rightarrow(b-1) \rightarrow(c+1) & \text { (for } a \geq 3, b \geq 2, c \geq 1), \\
\{a, b, c, d\}>a \rightarrow a \rightarrow a \rightarrow \ldots \rightarrow a \rightarrow(b-1) \rightarrow(c+1) &
\end{array}
$$

(with $d+2$ entries in chain, for $a \geq 3, b \geq 2, c \geq 1, d \geq 2$).

Here, I will attempt to prove that

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{~b}-1) \rightarrow(\mathrm{c}+1)
$$

(with d+2 entries in chain, first d entries contain 'a'),
for all $a \geq 3, b \geq 2, c \geq 1, d \geq 2$.

In order to do this, I first need to prove two Lemmas.

Lemma 1:

$$
\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow \ldots \rightarrow \mathrm{y} \rightarrow \mathrm{z} \geq \mathrm{a},
$$

for chains of any length, where $a, b, c, \ldots, y, z \geq 1$.

Let C represent the chain $a \rightarrow b \rightarrow c \rightarrow \ldots \rightarrow y \rightarrow z$, which is of any length, where all of the entries contain positive integers (1, 2, 3, ...).

When the chain is of length $1, C=a$.

When the chain is of length $2, C=a \rightarrow b=a^{\wedge} b \geq a$.

When the chain is of length 3 or longer, C can be reduced in length, one at a time (by operation of Conway's Chained Arrow Notation), as follows,

$$
\begin{aligned}
& \mathrm{C}= \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow \mathrm{y} \rightarrow(\mathrm{z}-1) \\
&= \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow \mathrm{y}^{\prime \prime} \rightarrow(\mathrm{z}-2) \\
& \ldots \ldots \\
&= \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow \mathrm{y}^{*} \rightarrow 1 \\
&=\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x} \rightarrow \mathrm{y}^{*} \\
&= \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x}^{\prime} \rightarrow\left(\mathrm{y}^{*}-1\right) \\
& \ldots \ldots \\
&= \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \ldots \rightarrow \mathrm{x}^{*},
\end{aligned}
$$

until they contain 3 entries, for example,
$\mathrm{C}=\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}^{*}=\mathrm{a}^{\wedge \wedge \wedge \cdots \wedge} \mathrm{b} \quad$ (with c^{*} Knuth's up-arrows).

Using my 'extended operator notation' (where the number in curly brackets represents the number of up-arrows), C can be written as

$$
C=a\left\{c^{*}\right\} b .
$$

Since,

$$
C=a\left\{c^{*}-1\right\} b^{\prime}=a\left\{c^{\star}-2\right\} b^{\prime \prime}=\ldots=a\{1\} b^{\star}=a^{\wedge} b^{*},
$$

for some positive integer b^{*}, it follows that $C \geq$ a for C of any length of 1 or greater, and so, Lemma 1 is proven.

Lemma 2:

$\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1) \rightarrow \mathrm{z}>(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow \mathrm{z})+1$
(with $n+2$ entries in chain on each side, first n entries contain ' a '),
for all $a \geq 3, y \geq 1, z \geq 1, n \geq 1$.

This involves proof by induction.

When $a \geq 3, y \geq 1, z=1, n=1$,

$$
\begin{aligned}
a \rightarrow(y+1) & =a^{\wedge}(y+1) \\
& =a \times a^{\wedge} y \\
& >2 a^{\wedge} y \\
& >a^{\wedge} y+1 \quad \quad\left(\text { since } a^{\wedge} y \geq 3^{\wedge} 1>1\right) \\
& >(a \rightarrow y)+1, \quad
\end{aligned}
$$

and so,

$$
a \rightarrow(y+1) \rightarrow 1>(a \rightarrow y \rightarrow 1)+1
$$

this holds true.

Assuming that this holds true for $a \geq 3, y \geq 1, z=k, n=1$,
when $a \geq 3, y \geq 1, z=k+1, n=1$,

$$
\begin{aligned}
& a \rightarrow(y+1) \rightarrow(k+1)=a\{k+1\}(y+1) \quad \text { (using my 'extended operator notation') } \\
& =a\{k\}(a\{k+1\} y) \quad \text { (by definition) } \\
& =a \rightarrow(a\{k+1\} y) \rightarrow k \\
& =\mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1)) \rightarrow \mathrm{k} \\
& >(\mathrm{a} \rightarrow((\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1))-1) \rightarrow \mathrm{k})+1 \\
& >(\mathrm{a} \rightarrow((\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1))-2) \rightarrow \mathrm{k})+2 \\
& >(\mathrm{a} \rightarrow 1 \rightarrow \mathrm{k})+(\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1))-1 \\
& \text { (since } \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1) \geq \mathrm{a}>1 \text { by Lemma 1) } \\
& =\mathrm{a}+(\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1))-1 \\
& >(\mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{k}+1))+1 \text {, }
\end{aligned}
$$

this holds true. So, Lemma 2 holds true for $a \geq 3, y \geq 1, z \geq 1, n=1$.

Assuming that this holds true for $a \geq 3, y \geq 1, z \geq 1, n=k$,
when $a \geq 3, y \geq 1, z=1, n=k+1$,

$$
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1)=\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{~N} \rightarrow \mathrm{y}
$$

(with $k+2$ entries in chain on each side),
where $\mathrm{N}=\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\mathrm{y}+1)$
(with $\mathrm{k}+2$ entries in chain).
Since

$$
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1) \rightarrow \mathrm{z}>(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow \mathrm{z})+1
$$

(with $\mathrm{k}+2$ entries in chain on each side)
implies that

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow \mathrm{z} & >(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow 1 \rightarrow \mathrm{z})+1 \\
& >(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a})+1
\end{aligned}
$$

(for all y ' ≥ 2, where ' $a \rightarrow a \rightarrow \ldots \rightarrow a$ ' denotes k entries of ' a '),
it follows that

$$
\begin{aligned}
N & >(a \rightarrow a \rightarrow \ldots \rightarrow a)+1 & & (\text { with } k \text { entries in chain, since } a-1 \geq 2) \\
& \geq a+1 & & (\text { by Lemma } 1),
\end{aligned}
$$

and so,

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1) & >\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}+1) \rightarrow \mathrm{y} \\
& >(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{y})+1
\end{aligned}
$$

(with $\mathrm{k}+2$ entries in chain on each side, since $\mathrm{N}>\mathrm{a}+1$).
This means that

$$
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1) \rightarrow 1>(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow 1)+1
$$

(with $k+3$ entries in chain on each side),
and so Lemma 2 holds true for $a \geq 3, y \geq 1, z=1, n=k+1$.

Assuming that this also holds true for $a \geq 3, y \geq 1, z=m, n=k+1$ (as well as $a \geq 3, y \geq 1, z \geq 1, n=k$), when $a \geq 3, y \geq 1, z=m+1, n=k+1$,

$$
\begin{aligned}
\mathrm{a} \rightarrow \mathrm{a} \rightarrow & \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{y}+1) \rightarrow(\mathrm{m}+1) \\
& \quad(\text { with } \mathrm{k}+3 \text { entries in chain and ' } \mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \text { represents } \mathrm{k}+1 \text { entries of ' } \mathrm{a} \text { ') } \\
= & \mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1)) \rightarrow \mathrm{m} \\
> & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow((\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))-1) \rightarrow \mathrm{m})+1 \\
> & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow((\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))-2) \rightarrow \mathrm{m})+2 \\
& \ldots \ldots \\
> & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow 1 \rightarrow \mathrm{~m})+(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))-1 \\
& \quad(\text { since } \mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1) \geq \mathrm{a}>1 \text { by Lemma 1) } \\
= & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))+(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a})-1 \\
\geq & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))+\mathrm{a}-1 \\
& \quad(\text { since } \mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \geq \mathrm{a} \text { by Lemma } 1) \\
> & (\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow(\mathrm{~m}+1))+1,
\end{aligned}
$$

this holds true. So, this holds true for $\mathrm{a} \geq 3, \mathrm{y} \geq 1, \mathrm{z} \geq 1, \mathrm{n}=\mathrm{k}+1$, which means that Lemma 2 holds true for $a \geq 3, y \geq 1, z \geq 1, n \geq 1$ and it is proven.

Corollary 1:

When $y^{\prime}>y \geq 1$,

$$
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y}^{\prime} \rightarrow \mathrm{z}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y} \rightarrow \mathrm{z}
$$

(with $n+2$ entries in chain on each side, first n entries contain ' a '),
for all $a \geq 3, z \geq 1, n \geq 1$.

This is the result of Lemma 2 being applied repeatedly, since $y^{\prime}>y^{\prime}-1>y^{\prime}-2>\ldots>y$.

Corollary 2:

When $y^{\prime}>y \geq 1$,

$$
\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y}^{\prime}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{y}
$$

(with $n+1$ entries in chain on each side, first n entries contain ' a '), for all $a \geq 3, z \geq 1, n \geq 1$.

This is the same as Corollary 1 but with $z=1$, which means that the final entries of the chains on both sides of the inequality can be removed under the rules for Conway's Chained Arrow Notation.

With both Lemmas proven, I am ready for the main part of the proof.

Main Proof:

$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}-1>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{b}-1) \rightarrow(\mathrm{c}+1)$
(with $d+2$ entries in chain, first d entries contain ' a '),
for all $a \geq 3, b \geq 2, c \geq 1, d \geq 2$.

This also involves proof by induction.
When $a \geq 3, b=2, c=1, d=2$,
$\{a, 2,1,2\}-1=\{a, a,\{a, 1,1,2\}\}-1$

$$
\begin{array}{ll}
=\{a, a, a\}-1 & \\
=(a \rightarrow a \rightarrow a)-1 & \\
>a \rightarrow a \rightarrow(a-1) & \text { (by Lemen }\{a, b, c\}=a \rightarrow b \rightarrow c, b y \text { definition) } \\
>a \rightarrow a \rightarrow 1 & \text { (by Corollary 2, since } a-1>1) \\
=a \rightarrow a & \\
=a \rightarrow a \rightarrow 1 \rightarrow 2, &
\end{array}
$$

this holds true.

Assuming that this holds true for $a \geq 3, b=k, c=1, d=2$,
when $a \geq 3, b=k+1, c=1, d=2$,
this holds true. So, this holds true for $a \geq 3, b \geq 2, c=1, d=2$.

Assuming that this holds true for $a \geq 3, b \geq 2, c=k, d=2$,
when $a \geq 3, b=2, c=k+1, d=2$,

$$
\begin{aligned}
\{\mathrm{a}, 2, \mathrm{k}+1,2\}-1 & =\{\mathrm{a},\{\mathrm{a}, 1, \mathrm{k}+1,2\}, \mathrm{k}, 2\}-1 \\
& =\{\mathrm{a}, \mathrm{a}, \mathrm{k}, 2\}-1 \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\mathrm{k}+1) \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow 1 \rightarrow(\mathrm{k}+1) \quad \text { (by Corollary 1, since } \mathrm{a}-1>1) \\
& =\mathrm{a} \rightarrow \mathrm{a} \\
& =\mathrm{a} \rightarrow \mathrm{a} \rightarrow 1 \rightarrow(\mathrm{k}+2),
\end{aligned}
$$

this holds true, and assuming that this also holds true for $a \geq 3, b=m, c=k+1, d=2$, when $a \geq 3, b=m+1, c=k+1, d=2$,

$$
\begin{aligned}
\{\mathrm{a}, \mathrm{~m}+1, \mathrm{k}+1,2\}-1 & =\{\mathrm{a},\{\mathrm{a}, \mathrm{~m}, \mathrm{k}+1,2\}, \mathrm{k}, 2\}-1 \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\{\mathrm{a}, \mathrm{~m}, \mathrm{k}+1,2\}-1) \rightarrow(\mathrm{k}+1) \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{~m}-1) \rightarrow(\mathrm{k}+2)) \rightarrow(\mathrm{k}+1)
\end{aligned}
$$

(by Corollary 1 , since $\{a, m, k+1,2\}-1>a \rightarrow a \rightarrow(m-1) \rightarrow(k+2)$) $=\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{m} \rightarrow(\mathrm{k}+2)$,
this holds true. So, this holds true for $a \geq 3, b \geq 2, c=k+1, d=2$, and therefore, this holds true for $a \geq 3, b \geq 2, c \geq 1, d=2$.

Assuming that this holds true for $a \geq 3, b \geq 2, c \geq 1, d=k$, when $a \geq 3, b=2, c=1, d=k+1$,

$$
\{a, 2,1, k+1\}-1=\{a, a,\{a, 1,1, k+1\}, k\}-1
$$

$$
=\{a, a, a, k\}-1
$$

$$
>\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\mathrm{a}+1)
$$

(with $k+2$ entries in chain and ' $a \rightarrow \ldots \rightarrow a$ ' represents k ' a 's)
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-2) \rightarrow(\mathrm{a}+1)) \rightarrow \mathrm{a}$
$\geq \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}$
(by Corollary 1 , since $a \rightarrow \ldots \rightarrow a \rightarrow(a-2) \rightarrow(a+1) \geq a$ by Lemma 1)

$$
\begin{aligned}
& \{a, k+1,1,2\}-1=\{a, a,\{a, k, 1,2\}\}-1 \\
& =(a \rightarrow a \rightarrow\{a, k, 1,2\})-1 \\
& \text { (since }\{a, b, c\}=a \rightarrow b \rightarrow c \text {, by definition) } \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\{\mathrm{a}, \mathrm{k}, 1,2\}-1) \\
& \text { (by Lemma } 2 \text { with } \mathrm{y}=\{\mathrm{a}, \mathrm{k}, 1,2\}-1, \mathrm{z}=1, \mathrm{n}=2 \text {) } \\
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{k}-1) \rightarrow 2) \\
& \text { (by Corollary } 2 \text {, since }\{a, k, 1,2\}-1>a \rightarrow a \rightarrow(k-1) \rightarrow 2 \text {) } \\
& =\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{k} \rightarrow 2 \text {, }
\end{aligned}
$$

$$
>\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow 1
$$

(by Corollary 2, since $a>1$)
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a}$
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow 1 \rightarrow 2$
(with $\mathrm{k}+3$ entries in chain),
this holds true, and assuming that this also holds true for $a \geq 3, b=m, c=1, d=k+1$, when $a \geq 3, b=m+1, c=1, d=k+1$,
$\{a, m+1,1, k+1\}-1=\{a, a,\{a, m, 1, k+1\}, k\}-1$
$>\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\{\mathrm{a}, \mathrm{m}, 1, \mathrm{k}+1\}+1)$
(with $k+2$ entries in chain and ' $a \rightarrow \ldots \rightarrow a$ ' represents k ' a 's)
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-2) \rightarrow(\{\mathrm{a}, \mathrm{m}, 1, \mathrm{k}+1\}+1)) \rightarrow\{\mathrm{a}, \mathrm{m}, 1, \mathrm{k}+1\}$
$\geq \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow\{\mathrm{a}, \mathrm{m}, 1, \mathrm{k}+1\}$
(by Corollary 1, since $a \rightarrow \ldots \rightarrow a \rightarrow(a-2) \rightarrow(\{a, m, 1, k+1\}+1) \geq a$ by Lemma 1)
$>\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow(\mathrm{m}-1) \rightarrow 2)$
(by Corollary 2 , since $\{a, m, 1, k+1\}>a \rightarrow \ldots \rightarrow a \rightarrow a \rightarrow(m-1) \rightarrow 2$)
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{m} \rightarrow 2$
(with $\mathrm{k}+3$ entries in chain),
this holds true. So, this holds true for $a \geq 3, b \geq 2, c=1, d=k+1$.

Assuming that this also holds true for $a \geq 3, b \geq 2, c=n, d=k+1$ (as well $a s a \geq 3, b \geq 2, c \geq 1, d=k$), when $a \geq 3, b=2, c=n+1, d=k+1$,

$$
\begin{aligned}
\{\mathrm{a}, 2, \mathrm{n}+1, \mathrm{k}+1\}-1 & =\{\mathrm{a},\{\mathrm{a}, 1, \mathrm{n}+1, \mathrm{k}+1\}, \mathrm{n}, \mathrm{k}+1\}-1 \\
& =\{\mathrm{a}, \mathrm{a}, \mathrm{n}, \mathrm{k}+1\}-1 \\
& >\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\mathrm{n}+1)
\end{aligned}
$$

(with $k+3$ entries in chain and ' $a \rightarrow \ldots \rightarrow a$ ' represents $k+1$ ' a 's)

$$
>a \rightarrow \ldots \rightarrow a \rightarrow 1 \rightarrow(n+1)
$$

(by Corollary 1 , since $a-1>1$)
$=\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a}$
$=a \rightarrow \ldots \rightarrow a \rightarrow 1 \rightarrow(n+2)$
(with $\mathrm{k}+3$ entries in chain),
this holds true, and assuming that this also holds true for $a \geq 3, b=m, c=n+1, d=k+1$,
when $a \geq 3, b=m+1, c=n+1, d=k+1$,

$$
\begin{aligned}
& \{a, m+1, n+1, k+1\}-1=\{a,\{a, m, n+1, k+1\}, n, k+1\}-1 \\
& >\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\{\mathrm{a}, \mathrm{~m}, \mathrm{n}+1, \mathrm{k}+1\}-1) \rightarrow(\mathrm{n}+1) \\
& \text { (with } k+3 \text { entries in chain, ' } a \rightarrow \ldots \rightarrow a \text { ' representing } k+1 \text { ' } a \text { 's) } \\
& >\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{~m}-1) \rightarrow(\mathrm{n}+2)) \rightarrow(\mathrm{n}+1) \\
& \text { (by Corollary 1, since } \\
& \{a, m, n+1, k+1\}-1>a \rightarrow \ldots \rightarrow a \rightarrow(m-1) \rightarrow(n+2)) \\
& =\mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{~m} \rightarrow(\mathrm{n}+2) \\
& \text { (with } k+3 \text { entries in chain), }
\end{aligned}
$$

this holds true. So, this holds true for $a \geq 3, b \geq 2, c=n+1, d=k+1$, which means that this holds true for $a \geq 3, b \geq 2, c \geq 1, d=k+1$.

Therefore, the inequality

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{~b}-1) \rightarrow(\mathrm{c}+1)
$$

(with $d+2$ entries in chain, first d entries contain ' a ')
holds true for all $a \geq 3, b \geq 2, c \geq 1, d \geq 2$ and I have completed the proof.

For example,
$\{3,3,1,2\}>3 \rightarrow 3 \rightarrow 2 \rightarrow 2$,
$\{3,3,2,2\}>3 \rightarrow 3 \rightarrow 2 \rightarrow 3$,
$\{3,4,2,2\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 3$,
$\{3,3,1,3\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2$,
$\{3,3,2,3\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 3$,
$\{3,4,2,3\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3$,
$\{3,3,3,3\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 4$,
$\{3,3,1,4\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2$,
$\{4,4,4,4\}>4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 3 \rightarrow 5$,
$\{3,3,1,5\}>3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2$,
$\{3,3,1,10\}>3 \rightarrow 3 \rightarrow 2 \rightarrow 2$.

Another result from the proof (especially for large d) is that (for $a \geq 3$)
$\{\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{d}\}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-1) \rightarrow(\mathrm{a}+1)$
(with $d+2$ entries in chain, first d entries contain ' a ')

$$
\begin{aligned}
& =\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-2) \rightarrow(\mathrm{a}+1)) \rightarrow \mathrm{a} \\
& \geq \mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}
\end{aligned}
$$

(by Corollary 1 , since $\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \rightarrow(\mathrm{a}-2) \rightarrow(\mathrm{a}+1) \geq \mathrm{a}$ by Lemma 1),
so, when $a \geq 3$,
$\{\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{d}\}>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \quad$ (with $\mathrm{d}+2$ entries of ' a ' in chain).

So, while the final entry in an array of 3 entries determines the number of Knuth's up-arrows, this 'array notation' grows so phenomenally fast that the final entry in an array of just 4 entries determines the minimum length of the Conway chain. An array of length 5 would (of course) become far too huge for Conway's Chained Arrow Notation. For example (for $a \geq 3$), while
$\{a, 2,1,1,2\}=\{a, a, a, a\}$

$$
\begin{aligned}
& >\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \quad \text { (with a+2 entries in chain) } \\
& =\mathrm{N},
\end{aligned}
$$

$\{a, 3,1,1,2\}=\{a, a, a,\{a, 2,1,1,2\}\}$
$>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \ldots \rightarrow \mathrm{a} \quad$ (with $\mathrm{N}+2$ entries in chain),
and so,

$$
\begin{aligned}
\{a, b, 1,1,2\} & =\{a, a, a,\{a, b-1,1,1,2\}\} \\
& >a \rightarrow a \rightarrow \ldots \rightarrow a \quad \text { (with }\{a, b-1,1,1,2\}+2 \text { entries in chain). }
\end{aligned}
$$

This means that while

$$
\begin{aligned}
\{3,2,1,1,2\} & =\{3,3,3,3\} \\
& >3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 4 \\
& >3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \quad \text { (of length } 5 \text {), }
\end{aligned}
$$

the number
$\{3,5,1,1,2\}>3 \rightarrow 3 \rightarrow 3 \rightarrow \ldots \rightarrow 3$
(of length $3 \rightarrow 3 \rightarrow \ldots \rightarrow 3$ (of length $3 \rightarrow 3 \rightarrow \ldots \rightarrow 3$ (of length $3 \rightarrow 3 \rightarrow \ldots \rightarrow 3$ (of length $3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 4)$))),
which should be sufficient proof that Bird's Linear Array Notation with 5 or more entries generally goes beyond Conway's Chained Arrow Notation.

One can only try to imagine the largeness of arrays with 6 or more entries! Even
$\{3,3,1,1,1,2\}=\{3,3,3,3,\{3,3,3,3,3\}\}$.

Of course, these arrays (like the numbers in Conway's Chained Arrow Notation) can contain hundreds, thousands or millions of entries, or even much, much more than that!

Author: Chris Bird (Gloucestershire, England, UK)
Last modified: 4 April 2006
E-mail: m.bird44 at btinternet.com (not clickable to thwart spambots!)

