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Contents (outline of this talk)
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• Methods and testing

• New patterns and interactions (mostly video)

• Connections; Open questions

• Discussion



Brief History: Initial Motivation

Pearson “Complex patterns in a simple system” (Science 261
1993) (illust. next slide)

Roy Williams “Xmorphia” web exhibit (Caltech,
1994)

Lee et al. “Experimental observation of self-replicating spots in
a reaction-diffusion system” (Nature 369 1994)

Ferrocyanide–iodate–sulphite
reaction in gel reactor

( K4Fe(CN)6
.3H2O , NaIO3 , Na2SO3 ,

H2SO4 , NaOH , bromothymol blue )

• 1994: Looking for a problem to run on new
hardware

• Supercomputer research led to Williams
exhibit at Caltech (shown, left)

• Literature was easy to find; problem was
appealing

• Exploring parameter space more closely



Brief Intro: Parameter Space

Parameter space visualizations for several reaction-
diffusion models, from fig. 3, Miyazawa et al. “Blending
of animal colour patterns by hybridization” (Nature

Comm. 1(6) 2010)

Parameter space and four pattern examples, from
Pearson (ibid. 1993)

Coloring imitates bromothymol blue pH indicator as in Lee et al.
“Pattern formation by interacting chemical fronts” (Science 261
1993): blue = low U; yellow = intermediate; red = high U



Brief History: 2009 Website Project
• Denser coverage; explore more extreme
parameter values
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• Video for each (k,F) point

• Higher resolution and precision

• Coloring to show both U and !U/!t

• Describe and catalog all phenomena

• Run each pattern “to completion” no
matter how long that takes

published work

False color images: purple = lowest U, red = highest U, pastels = !U/!t > 0

Pearson: 34 sites; 0.045<k<0.066;
0.003<F<0.061; all static

Williams: 45 sites; 0.032<k<0.066;
0.01<F<0.07; 4 video

Munafo: 150+ sites; 0.03<k<0.072;
0.004<F<0.098

• Several types of starting patterns



New pattern types (2009)
**

*

Munafo (2009)   www.mrob.com/pub/comp/xmorphia

k=0.057, F=0.09 k=0.059, F=0.09

k=0.061, F=0.062

*

• Some type of exotic behavior at
high F values was expected

• Spirals were expected (seen in
Belousov-Zhabotinsky and other
reaction-diffusion systems)

• k=0.061, F=0.062 has more
diversity than all the rest put
together

• Also found: mixed spots and
stripes; variations in branching; etc.

k=0.045, F=0.014



k=0.062, F=0.06

Periodic boundary conditions; size 3.35w x
2.33h

Each second is 1102 dtu

Initial pattern of low-level random noise
(0.4559<U<0.4562; 0.2674<V<0.2676)

Final values: 0.35<U<0.90; 0.00<V<0.36
(approx.)

(Contrast-enhanced images; lighter =
higher U)

• At many parameter values, patterns like this grow out of any
inhomogeneity, no matter how small
• This is not a consequence of numerical approximation error:
proven by mathematical analysis. Dominant wavelength (spot
size) depends on reaction dynamics and diffusion rate.
Turing “The chemical basis of morphogenesis” (Phil. Trans.

Royal Soc. London B 237(641) 1952)

Inherent Instability

t=3000

t=3900

t=4550

Turing-F600-k620.mp4 --
youtube.com/v/kXDTqqgrYCg

PDE4-20101127 Single 480x336 F 600 k 620 $ 4 % 9

Gray-Scott parameter values for Turing
instability (green; width to scale) and stable
moving patterns (blue; width exaggerated).
The video is at X
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Euler
integration

4th-order
Runge-Kutta

Numerical
instability

Turing
instability

How can we trust these results?

• Arbitrarily low-level noise can generate strong patterns

• Instabilities can exist in the ideal (exact) system, and
can be introduced by the numerical method

• Complex patterns are already proven to be real

• These new patterns are far more extraordinary

• Mathematical proof/disproof probably impossible

• How much precision is necessary? Is any finite
precision sufficient for proof?

• Is the standard precision “too accurate” to be relevant?
The real world has known levels of quantization and
randomness: “finite precision”

• Goals:

– Eliminate suspicion of numerical error

– Quantify the sensitivity of these pattern phenomena to
precision, randomness, reaction parameters and other
environmental conditions



Verification Examples
• Two stable moving phenomena

• One is clearly bogus, the other might be real

U-shaped pattern moves at about 1 dlu per
62,000 dtu (dimensionless units of length, time)

Two spots maintain the same distance while the
pair rotates toward a 45° alignment

• Progressively improve the simulation and look for a trend

measured value = true value + simulation error + measurement error

• Define something that is measurable

• Model the sources of error, e.g.:

CFL (Courant-Friedrichs-Lewy 1928) stability criterion (for the Laplacian term):

C "x2/"t

(A higher value means greater stability. Constant C depends on e.g. k and F for the Gray-Scott system)

simulation error = f(stability, precision, grid spacing, ...)



Verification Procedure

• Progressively improve "x by

!"

• Progressively improve CFL
stability by !"

• Progressively improve "t by
needed amount (2!")

“s4”

“s2.8”

“s2”

“s1.4”

“std”

512x5123.91e-40.007810.00175

360x3602.77e-40.02210.00247

256x2561.96e-40.06250.00350

180x1801.38e-40.1770.00495

128x1289.78e-50.50.00699

pixels(typ.)"x2/"t"t"x

Expected Results:

Movement is 100% spurious: measurements
should tend towards zero

If real, velocity should clearly
converge on a nonzero value

(amount of calculation increases by 4!" each time:
ratio of 1024 to 1 between “std” and “s4”)



Verification Examples - Results

• Two-spot pattern movement is bogus

• Moving U-shaped pattern is real; Runge-Kutta gives little if any benefit

• Asymptotic trends in values and in measurement errors, as expected

model    dist     pixels  time    velocity (meas.err)

std      0.55418   79.2   35076   1/63294(45)

s1.4     0.59863  121.1   37342   1/62379(64)

s2       0.57042  163.1   35456   1/62159(27)

s2.8     0.56947  230.3   35258   1/61913(44)

s4       0.56553  323.5   35009   1/61905(12)

                 cross-qtr. relative

model max dU/dt  interval   velocity

std   8.97e-7    5.6e5       1.0

s1.4  4.57e-7    1.12e6      0.50

s2    2.31e-7    2.18e6      0.26

s2.8  1.158e-7   4.34e6      0.129

s4    5.80e-8    8.7e6       0.064

model    dist     pixels  time    velocity (meas.err)

std      0.57937   82.9   36559   1/63101

s1.4     0.56053  113.4   35021   1/62479    same

s2       0.56351  161.2   35008   1/62124     as

s2.8     0.56517  228.6   35003   1/61934    above

s4       0.56574  323.6   35002   1/61870

2-spot data: Exploration Notes.txt, 20090422

Uskate velocities: 20101128

Min k: 20090422; max k: 20090415

Same tests using 4th order Runge-Kutta

Suspect rotating 2-spot phenomenon

model    minimum    maximum

std     0.0608833  0.0609829

s1.4    0.0608796  0.0609831

s2      0.0608777  0.0609831

s2.8    0.0608767  0.0609830

s4      0.0608762  did not test
     measurement error in all

     values is +-1 in the last digit

Velocity of U-shaped pattern Limits on parameter k (when F=0.06)
for stability of U-shaped pattern



Immunity to Noise

• Pattern continues to move in the presence of noise, and generally
behaves as expected of a real phenomenon

• Similar tests (e.g. more frequent noise events each of lower amplitude)
give similar results

k=0.0609, F=0.06

Periodic boundary conditions; size 3.35w x 2.33h    1 second # 1100 dtu

4 U-shaped patterns traveling “up”

Systematic noise perturbation applied once per 73.5 dtu

Amplitude of each noise event starts at 0.001 and doubles every 11,000 dtu (10 seconds in this
movie)

At noise level 0.064, three patterns are destroyed; noise amplitude is then diminished to initial level

(False-color: yellow = high U; pastel = positive !U/!t )

U-noise-immunity.mp4 -- youtube.com/v/_sir7yMLvIo

t=4700 t=64680 t=88500

PDE4-20101202 Single 480x336 F 600 k 609 % 10
cut and paste; 1e3nn; 2e3nn; 4e3nn; etc.



Symmetry-based Instability Tests

• Rotating and moving patterns have rotational or bilateral (resp.) symmetry which persists if the
pattern is stable.

• Instability and/or a return to symmetry are easier to observe in the derivative

• Test static and linear-moving patterns at different angles to reveal influence by grid effects

• Other tests include shifting parts of a pattern, applying noise to only part of a pattern, etc.

• Such tests can reveal instability more quickly but do not prove stability.

Daedalus-stability.mp4 -- youtube.com/v/fWfsMVEeP5k

k=0.0609, F=0.06 — Periodic boundary conditions; size 2.36w x 1.65h — Manually
constructed initial pattern based on parts of naturally-evolved systems — 1 second = 265
dtu

Two sets of three noise events; noise event amplitudes are 10-5, 0.001 and 0.1; pattern
allowed to recover after each event

Coloring (left image) same as before — Coloring (images below): white = positive !U/!t,
black = negative !U/!t, shades of gray when magnitude of !U/!t is less than about 5$10-13

t=1000 t=38,000t=2850

PDE4-20101202 Single 480x336 F 600 k 609 3d
load “s1.4-daedalus”; 1nn; 1e3nn; 1e5nn; 20c; etc.

A pattern with an
instability that this test
does not help reveal



Logarithmic Timebase, Long Duration
• Some phenomena appear asymptotic to stability but actually keep moving forever

• Running a simulation for as long as possible (currently >108 time units) and viewing the
results at an exponentially accelerating speed can reveal some of these phenomena

• Repulsion of solitons in 1-D (pictured, lower-right) has been studied mathematically for high
ratios DU/DV (Doelman et al. “Slowly modulated two-pulse solutions...”, SIAM Jrl. on Appl.

Math. 61(3) 2000) with the result: (speed of movement) = Ae-Bt for positive constants A,B

• There are many other phenomena in Gray-Scott systems that slow at similar rates

Pair of solitons in 2-D system, k=0.068, F=0.042

Pair of solitons in 1-D system, k=0.0615, F=0.04

t=3.2$108t=2$107

t=1,250,000t=78,125

Eight solitons in a 2-D system, k=0.067, F=0.046



Discovery – Great Diversity

• Part of routine scan for website exhibit project

• “Negative solitons” (hereafter called “negatons”) exhibit
attraction and multi-spot binding

• Several types of patterns in one system

• The “target” pattern is not stable at these parameter values,
but is stable at the nearby parameters k=0.0609, F=0.06

k=0.061, F=0.062       Periodic boundary conditions; size 3.35w x 2.33h

1 second # 1190 dtu

Initial pattern of a few randomly placed spots of relatively high U on a “blue”
background (secondary homogeneous state, approx. U=0.420, V=0.293)

(False-color: yellow = high U; pastel = positive !U/!t )

Original-F620-k610-fr159.mp4 -- youtube.com/v/wFtXwFfrwWk

t=4770 t=47700
Ordinary spot soliton
(k=0.067, F=0.062)

“negative soliton”
(k=0.061, F=0.062)

“negative solitons” in
Pearson (ibid. 1993)

“Pattern ! is time independent

and was observed for only a

single parameter value.”

(parameters unpublished,
probably k=0.06, F=0.05)

White curve = U; Black curve = V; dotted line shows
cross-section taken

Intel PDE4-20090319 Single 480x336 F620 k609 s000 $0151 %1 m0159 M I



Discovery – Moving U Pattern

• Moving “U” visible to right of center,
short-lived (hits two negatons)

• More unexpected negaton behavior:
being “dragged” by other features

U-discovery-F620-k609-fr521.mp4 --
youtube.com/v/xGMuuPYhLiQ

Original coloring -- youtube.com/v/ypYFUGiR51c

t=8860 t=74200

k=0.0609, F=0.062

Periodic boundary conditions; size 3.35w x 2.33h

1 second # 3900 dtu

Initial pattern and coloring same as before

t=125000

PPC PDE4-20090323 Single 480x336 F620 k609 s000 $0004 %1 m0521 M I

This video is at X; Pearson’s type ! is shown

F=0.06

F=0.08

F=0.04

k
=

0
.0

6

k
=

0
.0

7

k
=

0
.0

5

s
tr

ip
e
s

s
p
o
t s

o
lito

n
s

s
o

lid
 b

lu
e

 s
ta

te

red

!

X



Long Duration Test
Different Behaviors at Multiple Time Scales

• First 30,000 dtu (40 seconds): blue spots grow to fill the space (a very
common Gray-Scott behavior)

• Up to 1.25 million dtu (75 seconds): complex behavior, double-spaced
stripes, solitary negatons, etc. until all empty space is filled

• Up to 6 million dtu (90 seconds): chaotic oscillation of parallel stripes
growing, shrinking and twisting; gradually producing more spots

• Sudden onset of stability: All chaotic motion ends (whole system drifts very
slowly)

Exponential-time-lapse.mp4 -- youtube.com/v/-k98XOu7pC8

t=2500 t=441,000 t=1,780,000

k=0.0609, F=0.062       Periodic boundary conditions; size 3.35w x 2.33h

Initial pattern of spots (randomly chosen U<1, V>0) on solid red (U=1, V=0) background; coloring
same as before

Video uses accelerating time-lapse: simulation speed doubles every 6.7 seconds

Intel PDE4-20090401 Single 480x336 F620 k609 s000 $0027^ %3 m1248 M I



Complex Interactions

• U-shape can influence other objects and survive (although it generally
does not)

• The clusters of negatons along the top move and rotate, very slowly

complex-interactions-1.mp4 -- youtube.com/v/hgTBOf7gg8E

t=60,000 T=120,000 t=280,000

k=0.0609, F=0.06

Periodic boundary conditions; size 3.35w x 2.33h

Each second is 10,000 dtu

Manually constructed initial pattern based on parts of naturally-evolved systems

Coloring same as before

PDE4-20101202 Single 480x336 F 600 k 609
load “cplx-4”; cut and paste negatons; etc.



Slow Movement, Rotation

• There are many very slow patterns; a few of the
more common are shown here

• The “target” (negaton with annulus) is a common
product of spotlike initial patterns, and adjacent
negatons typically make it move or rotate

• The 4 negatons left by the collision of two U
patterns are in an unstable equilibrium

t=0 T=1,500,000

k=0.0609, F=0.06

Periodic boundary conditions; size 3.35w x 2.33h

Each second is 100,000 dtu

Manually constructed initial pattern based on parts of
naturally-evolved systems

Coloring same as before

T=7,000,000

slow movers and rotaters.mp4 --
youtube.com/v/PB3lPMhwIo0

Stability analysis of another slow-rotating pattern

Stability testing of 4-negaton
pattern; stable form shown at right

PDE4-20101202 Single 480x336 F 600 k 609
load “target-3x2-lopsided”; cut and paste negatons and Us; etc.



A Gray-Scott Pattern Bestiary

• Almost everything that keeps its shape moves indefinitely

• In general, a pattern will:
– move in a straight line, if is has (only) bilateral symmetry

– rotate, if it has (only) rotational symmetry

– move on a curved path, if it has no symmetry at all

• Lone negatons are frequently “captured” and/or “pushed” by a moving pattern

k=0.0609, F=0.06    Contrast-enhanced
grayscale, lighter = higher U

Most patterns were manually constructed from
parts of naturally occurring forms

Note: Many of these are not yet thoroughly tested

(unstable)



Relation to Other Work:
“Negaton” Clusters and Targets

• Spots and “target” patterns very similar to
the Gray-Scott “negatons” are seen in
papers by Schenk, Purwins, et al.

• In a 1998 work, a 2-component R-D
system is studied; the spots are stationary
and are reported to “bind” into stable
groupings with specific geometrical
configurations (as shown). There are
differences between this system and
Gray-Scott, evident in which “molecules”
are reported as stable.

• In a 1999 work (by Schenk alone) a 3-
component R-D system includes a
“target” pattern with a very similar cross-
section.

From Schenk et al. “Interaction of self-organized
quasiparticles...” (Physical Review E 57(6) 1998), fig. 1 and 5

The pattern marked * is stable in Gray-Scott at {k=0.0609,

F=0.06}, the pattern marked is *  not.

Target pattern from C. P.
Schenk (PhD dissertation,
WWU Münster, 1999) p. 116
fig. 4.37

Target pattern in Gray-Scott,
k=0.0609, F=0.06, with U and
V levels at cross-section
through center

*

*



Relation to Other Work: Halos
• The light and dark “rings” or “halos” are seen in physical experiments and

numerical simulations intended to model both physical and biological systems

• When spots appear in these systems, as in Gray-Scott, the spots tend to be
seen at certain “quantized” distances

• Halo amplitudes, spot spacings and relative sizes differ; this also reflects
changes seen in Gray-Scott as the k and/or F parameters are changed

Spots with halos in gas-discharge experiment by Lars
Stollenwerk (“Pattern formation in AC gas discharge
systems”, website of the Institute of Applied Physics,
WWU Münster, 2008) fig. 3d

Spots with halos in numerical simulation by Barrio et
al. “Modeling the skin patterns of fishes” (Physical

Review E 79 031908 2009) fig. 11

Negatons with halos (Gray-Scott
system, k=0.0609, F=0.06, lighter =
higher U; exaggerated contrast)

Halos also appear in models by Schenk, Purwins, et al (ibid., 1998 and
1999, shown elsewhere) in work related to gas discharge experiments



One-Dimensional Gray-Scott Model

• There are extensive results on the 1-D system based
on rigorous mathematical analysis (most are for higher
ratios DU/DV than in the systems presented here)

• The “spiral wavefront” observed at many parameter
values in the 2-D system is also a viable self-
sustaining stable moving pattern in the 1-D system at
the same parameter values

• For many parameter values that support “negative
stripes” in the 2-D system, certain asymmetrical
clumps of “negatons” form stable moving patterns in
the 1-D system

• Negatons in 1-D were reported (shown) as early as
1996

Representative 2-D and 1-D patterns at k=0.0609, F=0.06

2-D spirals and 1-D pulse at k=0.047, F=0.014

Single 1-D negaton inside a growing
region of solid “blue state” at k=0.06,
F=0.05, from Mazin et al. “Pattern
formation in the bistable Gray-Scott
model” (Math. and Comp. in

Simulation 40 1996) fig. 9

(Note: Non-existence results of Doelman, Kaper and Zegeling (1997) and of Muratov
and Osipov (2000) are not applicable because they concern models with a much
higher ratio DU/DV )

(Note: 2-D spirals shown here, and observed at many combinations of k and F parameter
values, were not reported by Pearson (ibid. 1993). This is likely because of Pearson’s starting
pattern, not because spirals would break up as claimed by Muratov and Osipov (2000) p. 84)



Open Questions

• Why does the U-shaped pattern move and keep its shape?

– As parameter k is increased, leading end of double-stripe (shown)
moves faster, but trailing end moves slower and the object
lengthens; in the other direction (decreasing k) the reverse is true

– When these two speeds are closely matched, the U shape (shown)
neither grows nor shrinks – why?

• Do these patterns appear in other reaction-diffusion models?

– Universal presence of other pattern types suggests this; parameter
space maps should make it easy to find; nearby Turing effect is
possibly relevant

• Can any of the special properties of these patterns be proven
mathematically?

– 1-D systems seem particularly well suited to this task

– Shape of negaton “halos” is easy to solve

– Most existing work applies conditions or limits that exclude the
commonly studied DU/DV=2 systems

From Miyazawa (ibid. 2010)

Double-stripe and U

1-D moving pattern



Discussion

Robert MunafoRobert Munafo mrobmrob..com/scicom/sci

mrobmrob..com/pub/comp/xmorphiacom/pub/comp/xmorphia

mrob27(at)mrob27(at)gmailgmail.com.com 617-335-1321617-335-1321


